
Contents

1 A guide to the sourcecode of Danger from the Deep 2
1.1 General idea . 2

1.1.1 Joining . 3
1.1.2 History . 3
1.1.3 Used libraries . 4
1.1.4 Language: C++ . 4
1.1.5 Error handling . 4

1.2 Structure of the project . 5
1.2.1 Main files and interfaces 5
1.2.2 Basic classes and types . 6
1.2.3 The game: state and display, the classes game and user interface 7

1.3 Coding style . 8
1.3.1 Introduction . 8
1.3.2 Indentation . 8
1.3.3 Placing (curly) braces . 9
1.3.4 Naming . 10
1.3.5 Closing words . 11

1.4 What needs to be done . 11
1.4.1 Janitors wanted . 11

1

Chapter 1

A guide to the sourcecode
of Danger from the Deep

A short overview about the topics:

• General idea

• Coding style

• What needs to be done

1.1 General idea

This is a hobby project. All developers do the work in their spare time, no one is
paid for it. The code has grown for years (since around january 2003) and many
people contributed to it. While we worked on the project, we changed many
things: interfaces, implementations and algorithms. We tried many things.
While developing the code, our knowledge developed as well. Thus, the style of
writing code and using C++ changed as well. As a result of all these facts, you
will find out that the code is not as uniform as code could be.

However, i can tell you from real life experience (working as software engi-
neer), that this is true for the most code on this planet. Considered that fact,
the source code of Danger from the Deep could be much worse. The code is
made after the object oriented paradigm about software construction. Its ex-
tensible, mostly readable and understandable. Beside aiming for functionality
we aim for speed too, as we are working on a game with realtime effects. For
that reason we use C++, as it features object orientation, high execution speed
and flexibility as well.

The game is written in portable code and can be compiled for many plat-
forms (up to six working at end of 2006). The text resources inside are not
hardcoded, so the game supports multiple languages (currently seven are im-
plemented at end of 2006). Now consider that we are working on a realtime 3d

2

game with many great visual effects, multi platform, multi language and many
more features.

1.1.1 Joining

If you want to join the team, then you are welcome. We need more developers.
But let me tell you one warning word first. This is not meant to offend you, but
to make you think. Please read on.

People tend to transfer their view of coding to new projects, trying to adapt
the project to their style. You may be a smart and brilliant coder, you may
believe that your way of doing things is the best, no matter what way the project
has chosen before you joined. We don’t want to hinder you to start hacking on
the code, extending it with more features or fixing bugs et cetera. Any help or
contribution is appreciated. But. . . there comes the warning.

But. . . the point is, if you do so, check carefully what you do and how you
do it. The feature you want do implement may have been already implemented,
somewhere more or less hidden in the code. The aspect you want to add may
collide with some other parts of the code. The functions you add may conflict
with existing interfaces. The way you want to implement a feature, may be only
one alternative of many, and possible not the ideal one, and so on.

This is not meant to offend you, the contributor of new code. I write this to
avoid double work. To avoid wasting your time with writing code that already
exists or wasting time of others by breaking existing code. If you want to
contribute, I stronlgy recommend to get a copy of the code and try to understand
what is going on inside it first. One step of that process is to read this document
so you are on the right path.

1.1.2 History

The game arised from a graphic test for OpenGL under Linux. I wanted to
try out OpenGL graphics under Linux and finally wrote some tile based water
rendering code. Later i added a simple model loader and had the very basics of
a submarine simulation. As i am a great fan of Silent Service and Aces of the
Deep (guess where the name comes from) and considered the fact that there is
or was no submarine simulation for Linux, i began to create one.

The project started in January 2003 and the code evolved since that time. I
improved my knowledge about C++, OpenGL and about software development
in general. Other developers joined the project and added more ideas and
development ideas and styles. Often things were just tried out and thrown
away later. This all lead to code that seems a bit chaotic, more like evolution
and less planned. There are many places where this can be seen. Interfaces
that are not fully implemented, or various ways doing similar things around the
code.

3

1.1.3 Used libraries

SDL, SDL image, fftw, SDL mixer, SDL net

1.1.4 Language: C++

speed, object orientation, platform independence, opengl, flexibility (multiple
inheritance)

1.1.5 Error handling

Currently the code treats errors as fatal events, reports it via message to com-
mand line and quits the game. Checks are done using the system::myassert()
function, but this is embarassing and ugly. This mixes code test related asser-
tions with error checks. C++ exceptions are the definite thing to use here, but
are used very rarely yet. I discovered only recently how useful they are.

The whole code (that means each place with a system::myassert() call has
to be checked wether it is an error check (in that case replaced by an descriptive
exception) or a development check (in that case a normal assert() could be
used). For exceptions one should define classes that heir from std::exception
and contain an error string. A hierarchy of exceptions could be created for a
finer grained error handling and control. Look at file error.h for an example
definition.

The general idea about exceptions is to report what went wrong, not where.
Exceptions are made to handle errors at runtime. If you want to know where
the error was raised to ease development, add a descriptive text to the exception
or print it in the log. Each exception can be given a report text that is for the
user or developer. With some tricky macros you can append the line and source
file name to the text as well (see file error.h). The set of exceptions brought by
the C++ standard library is a good starting point and these exceptions already
cover many possible errors, like invalid argument, runtime error and so on.
The constructor of an exceptions gets an user defined string, where a developer
can state the nature of the error.

For example you could check in some function, if a given pointer is non-zero:

if (!myptr)
throw std::invalid_argument("myfunction: Null-pointer given");

(Of course if you expect some pointer to have a valid value, you maybe could
use a reference instead).

All exceptions form an inheritance tree, a hierachy. Because of that one can
categorize errors and handle them regarding to category. This allows a very
flexible error management. I suggest you to learn something more about C++
exceptions if you are new to the language. The C-style of error reporting via
return values is not the way to do it. But do not confuse error handling by
value reporting. If a function should do a simple thing that can fail, it would
be ok to return a bool for that function and not throw an exception in case of

4

error. It depends on the severity and if the caller can handle that malfunction
directly.

Good examples where to use exceptions are situations where errors are not
expected, where normal code execution is assumed. As their name already tells,
exceptions are designed to handle exceptional situations. You want to load an
image and can’t read the file? Then throw an exception. The exception will be
e.g. passed upwards to the mission loader, which can react on it. For example
it could present an error message to the user: “couldn’t load mission, because
of . . . ” or similar things.

Final note: because exceptions break normal control flow of programs, you
have to write your code in a way that no memory is lost or resource is kept. If
you do a thing that needs to be cleaned up when leaving the current block of
code, you need to embrace the code with a try/catch clause and clean up in the
catch-path. You can make your life much easier, if you use built-in types that
do this automatically. For example use auto-pointers (std::auto ptr) instead
of plain C-pointers or streams (std::ifstream) instead of file-pointers. A very
handy thing is to add a class that does the cleanup in its destructor (and the
initialization in the constructor) and to instantiate an object of that class as
local variable. The compiler then will automagically do all the clean-up work
for you.

1.2 Structure of the project

1.2.1 Main files and interfaces

At the writing of this document the games has several dozen header and source
files (classes). It takes some work to learn which file does what and how. As a
short guide I explain the main files and interfaces here.

Where it all starts

Check the file subsim.cpp. This file contains the main function of the game.
There game objects are created, user interfaces are initialized and so on. You
need to learn about the other interfaces first to understand that file.

State and display

The central aspect is playing a game. The code is divided in two categories.
One for handling the state of the game, that is storing all objects, their data,
simulating physics, environment and so on. The other part is the presentation
of that data: visualization, sound processing, user input.

Hierachy of state classes

The central class for a game instance is the class game. That class describes an
instance of a game at any time and holds all other objects needed to represent a

5

game’s state. The class game holds all objects of the game’s world like airplaines,
ships, submarines, grenades, torpedoes and so on. Every object in the game that
is a physical entity is of class sea object or one of its heirs.

Heirs of sea object are e.g. ship, airplane, gun shell and so on. Heirs
of ship are e.g. submarine and torpedo. Now you see what we need multiple
inheritance for.

The game object and all incorporated objects are the data representation of
the simulated word. Their contents are stored in savegames. If you do something
about simulating the world or its content, you modify any object attached to
the game object.

Hierarchy of presentation classes

On the other side, there are the classes used for user input and graphical output
(well, sound and music as well). I describe the user interface here, that is merely
the graphical interface.

The central class of the user interface is called so: user interface. Ev-
erything needed to render the game or environment is attached to it. There
are implementations depending on the type of object that the player controls:
airplane interface, ship interface and submarine interface, where at
the moment only the latter is funtional. The interface object also holds classes
for displaying the sky, sun, moon, the ocean environment and the environment
of the player controlled vessel.

The in-game user interface is partitioned in multiple screens or displays,
also known as stations. For example the various compartments of a ship or
submarine: the bridge, the engine room, the map chart et cetera. The base
class for such a screen is user display. Every display heirs from it, and there
are many.

1.2.2 Basic classes and types

Mathematical helper classes

There are some basic classes that implement various mathematical constructs
as template classes, so one can instantiate them for any needed data type.
Predefined names for int, float and double exist. These base classes are for
vectors (vector2, vector3 and vector4), matrices (matrix4) and quaternions
(quaternion). Operator overloading is used so that one can write equations
and formulas in a common style. The code is rather self explanatory, so have a
look.

There is also a helper class for (nautical) angles: angle, that implements
wrapping of values at 360 degrees and some other useful things.

And finally a helper class for fixed point arithmetic data types: fixed. Fixed
point arithmetic is still faster for some cases and the precision is still high enough
for some tasks related to 3D rendering (do not use them for physics though, nor
float, but double for physics).

6

Other helper classes

bspline color data error filehelper fixed objcache ptrset

Rendering and system related related classes

model.h sound.h texture.h font.h network.h color.h image.h system.h

Components of the game state and simulation

ai.h airplane.h game.h torpedo.h submarine.h gunshell.hconvoy.hseaobject.hsensors.hship.hdepthcharge.h

Components of the graphical user interface

subbridgedisplay.hairplaneinterface.hfreeviewdisplay.hsubcontrolpopup.hsubdamagedisplay.hsubgaugesdisplay.hsubmarineinterface.huserdisplay.hsubperiscopedisplay.huserinterface.hsubtdcdisplay.huserpopup.hsubtdcpopup.hlogbookdisplay.hsubtorpedodisplay.hlogbook.hsubtorpsetupdisplay.hshipinterface.hsubuzodisplay.hmapdisplay.hshipssunkdisplay.h

Special 3D rendering related classes

oceanwavegenerator.hparticle.htriangulate.hperlinnoise.hcoastmap.hsky.hwater.hwatersse.hmakemesh.h

OpenGL GUI classes

widget.h

Miscellaneous classes

tokencodes.h token.h tokenizer.h binstream.h gldebug.h parser.h globaldata.hcfg.hhighscorelist.hkeys.htexts.hcredits.h

1.2.3 The game: state and display, the classes game and
user interface

The code (functionality, data structures and classes) of the game is partitioned
in two parts: one managing the state and the other managing the display or
user interface. The central class for the state data is the class game with all its
dependant classes (sea object and its heirs and so on). All data you need to
describe a game’s state is stored there. If you want to save games or do network
play, all data you have to access is hold by that class.

On the other side there is the user interface. Its heirs and associated classes
manage everything from state presentation (visual and acustical - graphic and
sound) to user interaction (input). This part requests data from the game class
for presentation. Parts of the user interface for example are the classes for the
stations, the environmental rendering (classes water, sky, moon, user display
and many more).

To simulate the game one only needs to change the class game and its core-
lated data. This class knows nothing about the user interface. Because of that
you can use one instance of the user interface class with any instance of class

7

game without the need to reconstruct the user interface, which is a costly pro-
cess. You can instead simply exchange the game object, as it is done for loading
games or as it would be needed for network play or switching missions.

Note that at the moment there is a reference to user interface in class
game, that is needed for simulation. The main loop of the game is currently in
game::run(), which needs to know the user interface instance. However it is
planned to resolve that situation and move the main loop code outside of class
game. Then we have the real partition between two parts, as described above.
However if you plan to add features, always keep this partition in mind.

And why do we do that? Doesn’t it make thing more complicated? No, it
isn’t a real limitation, but on the other hand splits code in two clean domains.
Physical simulation and rendering are two independent parts. It would be a lot
more complex if state simulation would interact with the user interface in every
possible situation.

Note that events causing feedback to the user (like playing an explosion
sound after a collision) need some extra work. You can’t simply call an “play
explosion” function of the user interface (where the sound is played) from class
game (where you detect the collision). Instead you have to remember such events
in class game and let the user interface request the events and react on them.

This partitioning brings problems as you see, but also has its advantages.
You can simulate the game without need to render it. This allows dedicated
servers. Or it allows to exchange the renderer or many more things.

1.3 Coding style

1.3.1 Introduction

This is a topic that can cause more heat than light when discussed. Everyone
has and likes his own style. Anyway, this here is the style we use in the source
code of Danger from the Deep . You have been warned.

It is desireable to use one style throughout the whole code to enhance read-
ability. But creating working code is of course more important than keeping
style consistent at any cost. If you create new code and have the choice, you
should use the game’s style to enhance readability though. Code that was con-
tributed by other people may have a different style, this is the case in some
parts of current code.

This style originated from the ideas of the coding style of the Linux Kernel
(originally written by Linus Torvalds). Although everyone likes his own style and
mostly there are arguments pro or contra a certain style, this one is reasonable.
See below.

1.3.2 Indentation

People differ on how many spaces to indent. In my opinion everything less
than four is a pain. I use eight, because this will really help one to see how

8

indentation works (and even after sitting many hours in front of the monitor).
The simple solution to this problem is: use TABs for indentation. Everyone can
set his favorite tab width in his editor then. There is another reason: indenting
that much prevents you from nesting your code to deep, which is a good help
to avoid too complex code.

1.3.3 Placing (curly) braces

Yes, the old C discussion. I place braces at the end of the line of the command.
Want an example? here it comes:

Conditional commands:

if (x == 3) {
do_something();

} else if (y == 4) {
do_other();

} else {
do_another();

}

switch (a) {
case 3:

do_abc();
break;

case 4:
do_efg();

}

Various loops:

for (unsigned i = 0; i < 3; ++i) {
b += z;

}

do {
do_nothing();

} while (z == 5);

while (true) {
do_something();

}

Functions and classes:

void foo(int i)
{

do_func_code();

9

}

class xyz : public abc
{
private:

int a;
public:

xyz();
};

Why this style? Kernighan and Ritchie used it and when XEmacs is set to
this style it produces this kind of style and its auto-formatting works best with
it. Seriously, this style leads to code that wastes less space (especially saves
lines!) without losing readability. I’ve seen much code that places each brace
in its own line at the cost that the code is much longer. The longer it gets, the
less fits on one screen and one needs to scroll, which makes it more difficult to
follow the execution path of the code and to understand it.

1.3.4 Naming

I prefer using lowerspace characters and underscores. Why? humans are more
trained to read lowerspace characters and underscores are a better optical parti-
tion than mixing lowerspace and upperspace characters. Example: read this fast
and see what is easier. Lowerspace this variable has a very long name.
Upperspace thisVariableHasAVeryLongName. Horrible. Looks crowded to
me. If you write code for Danger from the Deep , please follow the rules and use
underscores and not mixed-case names.

The same goes for classes, members and functions. All should be in low-
erspace form. Methods that return some data from a class should be named
get xyz() when xyz is the name of the member. This is no hard rule, but it
should be followed for consistency.

The most important thing, and the only rule i urge you to really follow is to
not use hungarian notation nor anything similar. This is a very weird thing
some big, greedy software company introduced and makes code hard to read.
The compiler will check the type of the variables anyway, and if you state that
you would need this kind of notation to show what your variables are or do, you
did something wrong before. If you can’t tell from the name of a variable what
it does, then this is the real problem. Adding the type to the name doesn’t fix
it.

Cause of the real problem: maybe you also have too many variables so that
you want to add the type to distinguish between them? Another problem is the
reason: don’t make functions or classes too long or too complicated!

10

1.3.5 Closing words

These rules are no strict ”you must follow them” rules. I prefer working code
is added to the game rather than keeping the style conform. But it can help to
read and understand the code, so please try to keep the style.

1.4 What needs to be done

1.4.1 Janitors wanted

11

